Disturbances in Brain Physiology Due to Season Play: A Multi-Sport Study of Male and Female University Athletes

Front Physiol. 2021 Mar 30:12:653603. doi: 10.3389/fphys.2021.653603. eCollection 2021.

Abstract

High-performance university athletes experience frequent exertion, resulting in disrupted biological homeostasis, but it is unclear to what extent brain physiology is affected. We examined whether athletes without overtraining symptoms show signs of increased neurophysiological stress over the course of a single athletic season, and whether the effects are modified by demographic factors of age, sex and concussion history, and sport-related factors of contact exposure and season length. Fifty-three university-level athletes were recruited from multiple sports at a single institution and followed longitudinally from beginning of season (BOS) to end of season (EOS) and 1 month afterwards, with a subset followed up at the subsequent beginning of season. MRI was used to comprehensively assess white matter (WM) diffusivity, cerebral blood flow (CBF), and brain activity, while overtraining symptoms were assessed with Hooper's Index (HI). Although athletes did not report increased HI scores, they showed significantly increased white matter diffusivity and decreased CBF at EOS and 1 month afterwards, with recovery at follow-up. Global brain activity was not significantly altered though, highlighting the ability of the brain to adapt to exercise-related stressors. Male athletes had greater white matter diffusivity at EOS, but female athletes had greater declines in CBF at 1 month afterwards. Post-season changes in MRI measures were not related to change in HI score, age, concussion history, contact exposure, or length of athletic season. Hence, the brain shows substantial but reversible neurophysiological changes due to season play in the absence of overtraining symptoms, with effects that are sex-dependent but otherwise insensitive to demographic variations. These findings provide new insights into the effects of training and competitive play on brain health.

Keywords: brain activity; cerebral blood flow; exercise; season play; white matter.